目的 探究N-琥珀酰壳聚糖(NSCS)对牛血红蛋白(BHb)和正常肝细胞(HL-7702)的毒性。方法 在模拟人体生理条件下,以BHb为研究对象,采用紫外-可见分光光度法、荧光光谱法和同步荧光光谱法结合,探究NSCS对BHb的毒性;同时以HL-7702为研究对象,利用四甲基偶氮唑蓝(MTT)法考察NSCS对HL-7702的细胞毒性。结果 紫外-可见分光光度法和MTT法结果表明,NSCS的毒性较弱,且取代度对NSCS毒性的影响较小。荧光光谱显示,NSCS可以猝灭BHb的内源性荧光,且猝灭作用随取代度的增大略有增强。其猝灭机制主要为动态猝灭,二者间作用力主要为静电作用力和疏水作用力。同步荧光光谱显示,NSCS对BHb的构象基本无影响。结论 NSCS对BHb和HL-7702细胞的毒性均较弱。
Abstract
OBJECTIVE To investigate the toxicity of N-succinyl-chitosan (NSCS) to bovine hemoglobin (BHb) and human liver cells (HL-7702). METHODS BHb was used as a research object and the toxic effect of NSCS was investigated by UV-Vis absorption spectroscopy, fluorescence spectroscopy and synchrotron spectroscopy under the simulative human physiological condition. At the same time, human HL-7702 cells was used as a research object and methyl thiazolyl tetrazolium (MTT) assay was employed to examine the cytotoxicity of NSCS. RESULTS The restles of UV-Vis absorption spectroscopy and MTT showed that the toxicity of NSCS was weak, and substitution degree had little effect on it. The result of fluorescence spectroscopy demonstrated that the intrinsic fluorescence of BHb was quenched by NSCS and the quenching effect slightly increased with the increase of substitution degree. The quenching mechanism was mainly dynamic quenching, and the major driving forces were hydrophobic and electrostatic force. CONCLUSION The result of synchronous fluorescence spectroscopy reveals that NSCS has almost no influence on the conformation of BHb.The toxicity of NSCS to BHb and HL-7702 is weak.
关键词
N-琥珀酰壳聚糖 /
牛血红蛋白 /
HL-7702细胞 /
毒性 /
光谱法 /
四甲基偶氮唑蓝法
{{custom_keyword}} /
Key words
N-succinyl-chitosan /
bovine hemoglobin /
human liver cells (HL-7702) /
toxicity /
spectroscopy /
methy thiazolyl tetrazolium assay
{{custom_keyword}} /
中图分类号:
R996
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NAGPAL K, SINGH S K, MISHRA D N. Chiotsan nanoparticles: a promising system in novel drug delivery[J]. Biol Pharm Bull, 2010, 58(11): 1423-1430.
[2] KAMIYAMA K, ONISHI H, MACHIDA Y. Biodisposition characteristics of N-succinyl-chitosan and glycol-chitosan in normal and tumor-bearing mice[J]. Biol Pharm Bull, 1999, 22(2): 179-186.
[3] WANG Q, ZHANG L, HU W, et al. Preparation and in vitro antineoplastic activity of norcantharidi N-associated galactosylated chitosan nanoparticles[J]. Chin Pharm J(中国药学杂志), 2009, 44(12): 913-919.
[4] MA J P, LUO X T, ZHONG Y C, et al. Synthesis and HK-2 cellular uptake of low molecular weight chitosan glycyrrhizin conjugate[J]. Chin Pharm J(中国药学杂志),2017, 52(6):442-446.
[5] WU D, QI T Z, LIU H, et al. Optimization of immobilized effect of the O-carboxymethyl chitosan multi-hemostatic sponge on thrombin by the central composite design-response surface methodology[J]. Chin Pharm J(中国药学杂志), 2014, 49(2):138-142.
[6] SATO M, ONISHI H, KITANO M, et al. Preparation and drug release characteristics of the conjugates of mitomycin C with glycol-chitosan and N-succinyl-chitosan[J]. Biol Pharm Bull, 1996, 19(2):241-245.
[7] JIANG X, DAI H, LEONG K W, et al. Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions[J]. J Gene Med, 2006, 8(4):477-487.
[8] RAMANERY F P, MANSUR A A P, BORSAGLI F G L M, et al. Green and facile synthesis of water-soluble ZnS quantum dots nanohybrids using chitosan derivative ligands[J]. J Nanopart Res, 2014, 16(7): 1-14.
[9] MUKHOPADHYAY P, SARKAR K, BHATTACHARYA S, et al. pH Sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery[J]. Carbohyd Polym, 2014, 112(2):627-637.
[10] HUANG B, ZOU G L, YANG T M. Studies on the interaction between adriamycin and bovine serum albumin[J]. Acta Chim Sin (化学学报), 2002, 60(10):1867-1871.
[11] LIN L, SUN S Y, MU X, et al. Spectroscopic study on the interaction of 4-sulfonic calix [4] arene with hemoglobin[J]. J Analyt Sci (分析科学学报), 2007, 23(6):681-684.
[12] LIU Y M. Application of in vitro hepatocyte model in toxicology[J]. J Health Toxicol (卫生毒理学杂志), 2001, 15(4):243-245.
[13] WHITE A, HANDLER P, SMITH E L. Principle of Biochemistry(有机化学原理)[M]. Beijing: Science Press, 1978,110.
[14] GAO X Y, WEN W, SONG Z Y, et al. Effects of rare earth lons on interaction between nano TiO2 and bovine serum albumin in the presence of ultrasound[J]. Acta Phys-chim Sin (物理化学学报), 2012, 28(2):470-478.
[15] ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochemistry, 1981, 20(11):3096-3102.
[16] WANG Y Q, ZHANG H M, ZHANG G C. Interaction between silicotungstic heteropolyacid and bovine hemoglobin (BHb)[J]. Chin J Inorg Chem (无机化学学报), 2006, 22(5):895-899.
[17] ZHOU Q H, WANG Y Q, ZHANG H M, et al. Spectroscopic studies on the interaction between inidacloprid and bovine hemoglobin (BHb)[J]. J Instr Anal (分析测试学报), 2007, 26(3):368-372.
[18] YUAN X X, CHEN E Y, XIAO M S. Comparing the interaction of platinum-hypocrellin A complex and hypocrellin A with bovine hemoglobin[J]. J Nanjing Norm Univ(南京师范大学学报), 2015, 38(3):14-24.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
山西省自然科学基金资助项目(2015011012);山西医科大学大学生创新创业校级项目资助(20170707)
{{custom_fund}}